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ABSTRACT: Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that
their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and
environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical
approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may
offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component
analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis
of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of
PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.

KEYWORDS: cotton (Gossypium spp.), genetically modified, genetically engineered, herbicide-tolerant, composition,
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■ INTRODUCTION

Genetically modified (GM) crops are subjected to rigorous
premarket regulatory assessments that include numerous
laboratory and field studies.1 Compositional analyses represent
one component of these assessments and typically include the
measurement of levels of key nutrients such as protein, oil,
fiber, amino acids (AAs), minerals, fatty acids (FAs), and
vitamins, as well as crop-specific metabolites such as gossypol
and cyclopropenoid fatty acids (CPFAs) in cotton or
isoflavones in soybean. Results to date from these studies
have demonstrated consistently that the effect of transgenic
breeding, if any, is notably less than the impact of environment
or germplasm on crop composition variation in conventional
crops.2 Indeed, levels of all crop components are influenced
markedly by environment,2−5 and this observation provides
context to the evaluation of new GM crops when compared to
conventional counterparts.
The customary approach employed for comparative

compositional assessments is to apply analysis of variance
(ANOVA) to each analyte (nutrient or antinutrient of interest).
The means and variances of new crop varieties are compared to
the means and variances of compositional analytes from a
parental or near-isogenic comparator with contrasts within the
ANOVA model. Values from other varieties (either in-study or
derived from the literature) may be used to represent natural
variability in crop composition. In the univariate ANOVA
approach, however, a statistically significant difference between
the test and the control varieties is usually of small magnitude
and rarely indicates a meaningful difference, especially when
compared to other sources of variation, such as geographical
location. New statistical methods that simplify or provide more

meaningful interpretations have been developed and proposed
for the evaluation of the composition of GM crops in a
regulatory setting. Harrison et al.6−8 provided an introduction
to the use of Bayesian statistical methodology to compare GM
crops to their controls without testing for significance. Harrison
and Harrigan3 used boxplots and other graphical summaries to
demonstrate the extent of variation among and within varieties.
Other approaches for describing the relative magnitudes of

natural variation among varieties and variation due to effects of
environments and their interactions with the varieties can also
be considered for providing useful contextual information for
judging the effect of genetic modification of crop plants. For
example, Li et al.9 developed the method of principal variance
component analysis (PVCA) in the context of quantifying
batch effects on the variation of responses in microarray gene
expression studies. The success of this approach implies
suitability for more extensive applications. PVCA combines
the application of two popular data analysis procedures,
principal components analysis (PCA) and variance components
analysis, and has three main goals: (i) summarize large data sets
with a smaller set of relevant variables, (ii) describe the
percentages of variance in the original data that are explained by
the new variables, and then (iii) describe the relative amounts
of variation in those variables that can be explained by factors in
the experimental design and other covariates. This approach,
when applied to a compositional assessment of new GM crops,
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would provide an easily interpretable summary of the relative
contribution of GM to compositional variability.
In the following discussion, we applied PVCA to a

compositional study on a new herbicide-tolerant cotton
developed by Monsanto Company. This cotton,
MON 88701, is tolerant to dicamba and glufosinate herbicides.
MON 88701 contains a demethylase gene from Stenotropho-
monas maltophilia that expresses a dicamba mono-oxygenase
protein to confer tolerance to dicamba and a bialaphos
resistance (bar) gene from Streptomyces hygroscopicus that
expresses the phosphinothricin N-acetyltransferase protein to
confer tolerance to glufosinate.
As part of a comparative assessment, compositional analyses

were conducted on seed from MON 88701 and a parental
control, as well as a total of nine commercially available
varieties harvested from multiple replicated fields in the United
States during the 2010 growing season. Seed components
measured included proximates and fibers, amino acids, fatty
acids, vitamin E, minerals, gossypol, and CPFAs. Statistical
analysis included ANOVA as well as the novel application of
PVCA.

■ MATERIALS AND METHODS
Cotton Samples for Compositional Analyses. Acid-delinted

seed samples were collected from MON 88701 grown in a 2010 U.S.
production. The field production included cotton variety Coker 130 as
a parental conventional control as well as commercially available
varieties, termed references, to provide further information on
compositional variability inherent to cotton. A list of the references,
as well as field locations, is presented in Supplementary Table 1A in
the Supporting Information. Eight sites were planted with a
randomized complete block design, with four replicates per site
containing MON 88701 in two separate plots (treated and not treated
with herbicide), the conventional control, and four of the commercial
reference varieties. A total of 37 control and reference replicates
(Supplementary Table 1B in the Supporting Information) were
excluded from the analyses due to adventitious presence of the
MON 88701 event.
Compositional Analyses. Components assessed included prox-

imates (ash, calories, carbohydrates by calculation, protein, and total
fat), acid detergent fiber (ADF), neutral detergent fiber (NDF), crude
fiber (CF), total dietary fiber (TDF), AAs (18 components), FAs
(C8−C22), minerals (calcium, copper, iron, magnesium, manganese,
phosphorus, potassium, sodium, and zinc), vitamin E, and
antinutrients including gossypol and CPFAs (dihydrosterculic,
malvalic, and sterculic). Data were converted to dry weight expressions
based on moisture measurements on the corresponding samples.
Compositional analyses were conducted at Covance Laboratories Inc.,
in Madison, Wisconsin. Brief descriptions of the methods utilized for
the analyses are described below. Measurements were based on single
sample analysis.
Proximates and Calories. Protein levels were determined by the

Kjeldahl method.10 Protein and other nitrogenous compounds in the
samples were reduced to ammonia by digestion of the samples with
sulfuric acid containing a catalyst mixture. The acid digest was made
alkaline, and the ammonia was distilled and titrated with a standard
acid. The percent nitrogen was determined and converted to percent
protein by multiplication with 6.25. The fat content of the grain was
determined using the Soxhlet extraction method.11 Seed samples were
weighed into cellulose thimbles containing sand or sodium sulfate and
dried to remove excess moisture. Pentane was dripped through the
samples to remove the fat. Extracts were then evaporated, dried, and
weighed. The ash content was determined by combustion at 550 °C
and gravimetric quantitation of the nonvolatile matter remaining.12

The moisture content was determined by the loss of weight after
drying to a constant weight in a 100 °C vacuum oven.13 Carbohydrates

by calculation used the fresh weight-derived data and the following
equation:

= − + +

+

% carbohydrates 100% (% protein % fat % moisture

% ash)

Calories were calculated using the Atwater factors with the fresh
weight-derived data and the following equation:

= × + × + ×

calories (kcal/100 g)

(4 % protein) (9 % fat) (4 % carbohydrates)

Fiber Analysis. ADF was determined by washing the tissue with an
acidic boiling detergent solution to dissolve the protein, carbohydrate,
and ash.14 An acetone wash was used to remove the fats and pigments.
The remaining lignocellulose fraction was determined gravimetrically.
NDF was determined by treating the tissue with a neutral boiling
detergent solution to dissolve the protein, carbohydrate, and ash. Fats
and pigments were removed using an acetone wash. The remaining
hemicellulose, cellulose, and lignin fractions were measured gravi-
metrically.14,15 CF was quantitated as the loss on ignition of dried
residue remaining after digestion of the sample with 1.25% sulfuric
acid and 1.25% sodium hydroxide solutions under specific
conditions.16

AA Composition. The samples were hydrolyzed in 6 N HCl for
approximately 24 h at approximately 106−110 °C. Phenol was added
to the 6 N HCl to prevent halogenation of tyrosine. Cystine and
cysteine were converted to S-2-carboxyethylthiocysteine by the
addition of dithiodipropionic acid.17 Tryptophan was hydrolyzed
from proteins by heating at approximately 110 °C in 4.2 N NaOH for
20 h. The samples were analyzed by high-performance liquid
chromatography (HPLC) after preinjection derivatization.18 The
primary AAs were derivatized with o-phthalaldehyde (OPA), and the
secondary AAs were derivatized with fluorenylmethyl chloroformate
(FMOC).

FAs. The lipid was extracted and saponified with 0.5 N sodium
hydroxide in methanol. The saponification mixture was methylated
with 14% boron trifluoride in methanol. The resulting methyl esters
were extracted with heptane containing an internal standard. The
methyl esters of the FAs were analyzed by gas chromatography using
external standards for quantitation.19

Minerals. The sample was dried, precharred, and ashed overnight in
a muffle set to maintain 500 °C. The ashed sample was reashed with
nitric acid, treated with hydrochloric acid, taken to dryness, and put
into a solution of 5% hydrochloric acid. The amount of each element
was determined at appropriate wavelengths by comparing the emission
of the unknown sample, measured on the inductively coupled plasma
spectrometer, with the emission of the standard solutions.20

CPFAs. The total lipid fraction was extracted from the sample using
chloroform and methanol. A portion of the lipid fraction was then
saponified with a mild alkaline hydrolysis. The free FAs were extracted
with ethyl ether and hexane. The free FAs were then converted to their
phenacyl derivatives with 2-bromoacetophenone. The derivatives were
quantitated on a HPLC system equipped with an ultraviolet detector.
The amounts of malvalic, sterculic, and dihydrosterculic acids were
determined by comparison to external calibration curves of similarly
derivatized reference standards.21

Free and Total Gossypol. For free gossypol, the sample was
extracted with aqueous acetone. The solution was then filtered, and
the free gossypol was reacted with aniline. For total gossypol analysis,
the sample was extracted using a complexing reagent containing acetic
acid, 3-amino-1-propanol, and dimethylformamide. The solution was
then filtered, and the total gossypol was reacted with aniline.22 For
both analyses, the dianilinogossypol was quantitated spectrophoto-
metrically using a standard curve.

Vitamin E. The sample was saponified to break down any fat and
release vitamin E. The saponified mixture was extracted with ethyl
ether and then quantitated by HPLC using a silica column.23

Statistical Analysis of Composition Data. Univariate Analysis.
Studentized PRESS residuals tests were applied to each data set to
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identify outliers. Sodium values from two Coker 130 replicates from
the ARTI site were removed (PRESS > 6). To complete a statistical
analysis for a component in this study, at least 50% of the values for an
analyte had to be greater than the assay limit of quantitation (LOQ).
Thirteen FAs (caprylic, capric, lauric, myristoleic, pentadecanoic,
pentadecenoic, heptadecanoic, heptadecenoic, γ-linolenic, eicosenoic,
eicosadienoic, eicosatrienoic, and arachidonic acids) did not meet this
criterion and were excluded from statistical analysis. These FAs are
known to be present in only low amounts in conventional cottonseed,
if present at all. This study confirmed that this observation extended to
MON 88701. If less than 50% of the observations for a component
were below the assay LOQ, individual analyses that were below the
assay LOQ were assigned a value equal to one-half the assay LOQ.
This affected only sodium (LOQ = 100 ppm fwt), and applied were
the following assignments: Coker 130, two replicates at KSLA and one
replicate each at LACH and NMLC; MON 88701 (not treated with
herbicide), one replicate at all sites except NCBD.
Compositional analytes of MON 88701 and Coker 130 were

analyzed using a mixed model ANOVA. The analysis used the model

= + + + + +Y U T L B L LT e( )ijk i j jk ij ijk

where Yijk = unique individual observation, U = overall mean, Ti =
variety effect, Lj = random site effect, B(L)jk = random block within
site effect, LTij = random site by variety interaction effect, and eijk =
residual error. For each analyte, mean comparison tests were
conducted. SAS software was used to generate all summary statistics
(PROC MEANS and PROC MIXED) and to perform all analyses.
PVCA. An overview of the key steps in the PVCA procedure is

presented prior to details of its implementation in this study. The first
step of the PVCA procedure is to normalize the responses, if
necessary. For example, a variance-stabilizing transformation, such as a
logarithm, may be applied to individual analytes that have skewed
distributions due to a few extreme values.
The next step is to standardize each of the responses by subtracting

the mean of all observations for analyte, then dividing that difference
by the sample standard deviation, or Z = (X − X̅)/Sx. This
standardization removes the influence of the units of measurement
on the results and provides easier interpretation of the relative
contributions of the analytes in subsequent steps.
The third step is to check for linear dependencies in the data. This

can be done by computing the correlation matrix of the standardized
variables and then computing the rank of that matrix. If the rank is less
than the number of variables, then some of the variables must be
dropped from the analyses. They supply redundant information, and
they could adversely affect subsequent matrix calculations or
interpretations of the results.
The fourth step is to apply principal component analysis to the

correlation matrix. Principal components are linear combinations of
the standardized variables of the following form:

= + + +

= + + +

= + + +

P a Z a Z a Z

P a Z a Z a Z

P a Z a Z a Z

...

...
...

...

k k

k k

k k k kk k

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

where k is the number of analytes. The new variables {P1, P2, ..., Pk} are
obtained from an eigenanalysis of the correlation matrix. With
eigenanalysis, matrix operations are used to express the k × k
correlation matrix as a sum of products of eigenvectors and
eigenvalues. The new variables {P1, P2, ..., Pk} are constructed in a
way such that: (a) The coefficients ai1, ai2, ..., aik, which correspond to
the i-th eigenvector of the correlation matrix, are all between −1 and 1,
and the sum of their squared values is 1. (b) The variance of Pi is λi,
the i-th largest eigenvalue of the correlation matrix. (c) The sum of the
variances is equal to the number of variables; that is, Var(P1) +
Var(P2) + ... + Var(Pk) = λ1 + λ2 + ... + λk = k. Thus, the percentage of
the total variability in the data that can be explained by principal
component i is (100%)(λi/k), and the average amount of variance
explained by one of the principal components is 1. (d) The new

variables {P1, P2, ..., Pk} are uncorrelated with each other and thus
represent different dimensions or underlying facets contained in the
data.

The large set of k analytes can be effectively replaced with a smaller
subset of the first few principal components, since correlations among
subsets of the variables {Z1, Z2, ..., Zk} affect the derivation of the new
variables {P1, P2, ..., Pk}. For example, in a compositional study, we
might expect subsets of AAs to be correlated with each other in
response to nitrogen availability. In turn, one of the principal
components may include a weighted sum of those AA values. That
principal component would then be correlated with each of those AAs
and would thus serve as an effective surrogate variable to replace those
AAs in subsequent analyses without much loss of information. Li et al.9

recommended the retention of enough principal components to
explain 60−90% of the variation in the data, with a maximum of 10
retained components. For our application, we chose to retain enough
principal components to explain 80% of the variation, with a maximum
of 10 components.

Li et al.9 continued with their development of the original PVCA
procedure with the principal components, but we added an
intermediate step to assist with the interpretation of the results. In
principal component analysis, an analyte Zi may be correlated with two
or more of the principal components, so its role may be difficult to
interpret. Factor analysis is a method of deriving new linear
combinations of variables from the principal components via rotation,
a mathematical operation involving matrix multiplication. The rotated
principal components can be generated in a number of different ways
to satisfy various mathematical criteria. For our procedure, we chose
the varimax rotation method.24 Varimax factors have the following
form, which can be expressed in terms of either the standardized
variables or the principal components:

= + + + = + + +

= + + + = + + +

= + + + = + + +

F b Z b Z b Z c P c P c P

F b Z b Z b Z c P c P c P

F b Z b Z b Z c P c P c P

... ...

... ...
...

... ...

k k k k

k k k k

j j j jk k j j jk k

1 11 1 12 2 1 11 1 12 2 1

2 21 1 22 2 2 21 1 22 2 2

1 1 2 2 1 1 2 2

where j (≤k) is the number of components to be retained. The
coefficients are calculated in a way such that F1 and each of the other
factor scores have a mean of 0 and a standard deviation of 1. The
relative importance of the variables in the calculation of each factor is
indicated by the magnitudes of the coefficients {b11, ..., bjk}. Influential
analytes for each factor are indicated by coefficients with large absolute
values.

As with principal components, the new variables {F1, F2, ..., Fj}are
also uncorrelated with each other and thus provide insight into
different dimensions or facets of the data that may be influenced by
common experimental effects. Collectively, {F1, F2, ..., Fj} explain the
same amount of variance as the first j principal components. The
principal components maximize the amount of variance explained by
each successive component; however, the varimax rotation maximizes
the variance of the squared coefficients. This quantity is maximized
when the squared coefficients are close to zero or one. Consequently,
the varimax rotation tends to produce new variables {F1, F2, ..., Fj} in
which each analyte Zi is strongly correlated with at most one of the
factors. Thus, the role of the analyte Zi with respect to the variation in
the data is more easily distinguished. The proportion of variance
explained by Fi is the sum of the squared coefficients {bi1, bi2, ..., bik}
divided by the number of analytes k.

In our presentation, the factors {F1, F2, ..., Fj} are arranged in
descending order by the amounts of variation explained. However, in
general, the factor Fi does not explain the same amount of variation as
the principal component Pi. Also, unlike principal components, factor
Fi could change if the number of principal components specified for
retention is changed. For this reason, the principal component analysis
is applied, and the number of components to retain is determined
from that analysis, before the varimax rotation is applied.

After applying a varimax rotation to the principal components, the
next step is to apply variance components analysis to each of the
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derived factor variables {F1, F2, ..., Fj}. An ANOVA model is applied,
and all of the sources of variation of interest to the researcher are
modeled with random effects. Fixed effects are used only when a
source of variation is not of interest and is to be considered as a
nuisance effect. Li et al.9 recommend the restricted maximum
likelihood (REML) approach, since REML is the most efficient and
accurate method to estimate variance components, especially when the
experimental design is unbalanced, as is the case in our study.
In our application of PVCA, the variation among cotton varieties is

of interest. However, we wish to distinguish the amounts of variation
due to differences among GM, control, and reference varieties and
among the varieties within each of these three genotype groups. For
this purpose, a nested model was used, with genotype group effects
having three levels [GM (both MON 88701 T and NT), control, or
reference] and variety effects nested within the genotype group. Next,
for each factor score Fi, the sum of the variance components from the
ANOVA model was calculated, and the fraction of variance for that
factor that could be attributed to that source of variation was
calculated by dividing the corresponding variance component by the
total variance. The final step of our procedure is to combine the
percentages of variance among the analytes explained by the varimax
factor rotation and the percentages of variance explained by the
sources of variation in the experiment by simple multiplication.
One advantage of PVCA is that it can be performed with existing

routines in statistical software packages. The JMP Genomics package
has a routine for performing PVCA with unrotated principal
components, or the procedure can be implemented in the standard
JMP software with the Principal Components platform (which
includes varimax rotation capabilities) and the Fit Model platform.
Using SAS Version 9 software, the following procedures were applied
for the analyses that are presented here: PROC STDIZE for data
standardization, PROC PRINCOMP for PCA, PROC FACTOR for
varimax rotation, and PROC MIXED for obtaining variance
components in ANOVA. Additionally, a script in R for performing
PVCA without the varimax rotation is available.25

No transformations were applied to the data before standardization.
Two outlying values above the mean for sodium were identified, but
these were not transformed for this example. The sum of the
percentages of the total FAs in seed was 100% in each sample. To
eliminate this linear dependency, the variable representing behenic
acid in seed was dropped from the analyses, since it was small in
abundance and showed no significant differences between GM and
control in the traditional univariate analysis.

■ RESULTS AND DISCUSSION

Univariate Analysis. The compositional evaluation of
MON 88701 [herbicide-treated (T) and not treated (NT)]
was conducted by analyzing seed data across all eight individual
sites. Results from this combined-site analysis are presented in
Tables 1−5. Overall, the data confirmed that transgene
insertion had negligible impact on cotton composition and
that MON 88701 (T and NT) is compositionally equivalent to
a parental conventional control. The combined-site analysis
highlighted extensive overlap in the range of values for
respective components in the seed of MON 88701 (T and
NT) and the parental conventional control. This overlap
reflected similarities in geographical variability as well as
generally small magnitudes of difference observed between
MON 88701 (T and NT) and the parental conventional
control components at the individual site level. The novel
application of PVCA was therefore used to quantify the relative
contribution of the experimental factors in this study and to
evaluate its use as a complement or alternative method to
traditional univariate methods.
PVCA on Compositional Data. For the following

discussion, the principal components and factor scores will be
said to be strongly correlated with individual compositional

analytes if the absolute value of the linear correlation between
the derived variable and the analyte exceeds 0.707, with the
interpretation that at least 50% of the variation in the analyte
can be explained by its linear relationship with the new variable
(see Supplementary Table 2 and Figure 1 in the Supporting
Information). Absolute correlations between 0.5 and 0.707 can
be described as moderately correlated, with the amount of
variation in the analyte that can be explained by the factor
ranging between 25 and 50%.
The principal component analysis showed that seven

principal components were needed to meet the threshold of
80% (as discussed in the Materials and Methods) of the total
variance explained, so the first seven components were retained
for subsequent examination (see Supplementary Figure 1 in the
Supporting Information for PCA plot). Each of the first seven
eigenvalues was greater than 1, indicating that each of these
components explained more than the average amount of
variance that could be explained by all 51 principal
components.
The varimax rotation was applied to the first seven principal

components to form a set of seven rotated factors. The
advantage of the varimax rotation can be illustrated with an
example involving stearic acid, which was not strongly
correlated by any single principal component (P6, r = −0.43;
P7, r = −0.43; all other correlations, |r| ≤ 0.30). Thus, the role
of stearic acid is difficult to discern from the principal
components. However, stearic acid had a strong correlation
with only one varimax factor (F6, r = 0.72; all other correlations,
|r| ≤ 0.19), so the correspondence of stearic acid with factor F6

is easier to discern. In our example, each analyte had a strong
correlation with at most one factor.

Factor F1: Protein and AAs. The first factor, F1, obtained
by varimax rotation of the seven principal components was
strongly correlated with total protein and with 17 AAs. F1 =
0.05 Z(alanine) + 0.05 Z(arginine) + ... + 0.05 Z(valine), a
linear combination of the Z scores of all 51 analytes.
Coefficients for all factors are listed in Supplementary Table
2 in the Supporting Information with the information
presented in heatmap and dendrogram format in Figure 1. F1

was also strongly negatively correlated with total carbohydrates
(r = −0.79). F1 explained a total of 38% of the variation in the
compositional data. Obviously, the protein and AAs should be
correlated with each other, providing some validation of the
PVCA application. The negative correlation of carbohydrates
with protein is also expected.
Next, ANOVA with only random effects was used to estimate

the variance in F1 from the following sources: genotype group
[GM (treated, T, or not treated, NT), control, or conven-
tional], variety nested within genotype group, site, genotype
group by site interaction, interaction of site by variety nested
within genotype group, replicates nested within site, and
residual error. This analysis showed that the largest source of
variation in F1 was variation among the sites, which explained
50% of the variance (Table 6). The next largest contributor to
variation in F1 was the variation among the three genotype
groups, which explained 26% of the variance. The third largest
contributor to variation was residual error, which explained
16% of the variance in F1. Sources of variance that explain
smaller relative amounts of variation than the residual error can
be regarded as negligible and will not be explained further.
From these results, it can be concluded that the predominant

source of variation in cottonseed composition in this study was
due to the variation of proteinogenic AAs, which was mainly
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associated with variation among sites. Figure 2 contains
boxplots to display the variation in values of F1 among the
sites. Figure 3 shows the variation among varieties in F1 and
shows that, despite the variation among variety groups, MON
88701 (T and NT) was generally similar in protein
composition to the parental control. These results are
consistent with the lack or any significant difference between
MON 88701 (T and NT) and control protein composition
(Table 1).
The AA composition of MON 88701 (T and NT) and the

parental control were also similar as observed in the original
ANOVA. No significant differences for 15 of the 18 AAs were
observed. Statistically significant differences were observed only
for the following AAs: arginine (T and NT), methionine (T
only), and proline (T only). The small magnitudes of difference
between the MON 88701 and the control for these AAs (<3%
relative, with respect to the control) reflect the lack of
meaningful differences in protein values. The data provided
here demonstrated that MON 88701 is not a major contributor

to protein and AA variability in cottonseed and confirmed the
compositional equivalence of MON 88701 to the parental
control in levels of these analytes.
Protein expression is a quantitative trait, and levels are

influenced by both genotype and environment.26−28 The results
obtained through PVCA support the conclusion of a lack of
meaningful impact of transgenic breeding and are consistent
with studies29 that show that protein levels in cottonseed are
affected by geography.

Factor F2: Minerals. The factor F2 explained an additional
9% of the variation in the composition data (Supplementary
Table 3 in the Supporting Information). F2 was strongly
correlated with magnesium (r = 0.89), phosphorus (r = 0.83),
ash (r = 0.91), and potassium (r = 0.82). Again, the major
source of variation was due to site, which explained 69% of the
variation in F2. Residual error was the next largest contributor
to variance (14%).
The ash and mineral composition of MON 88701 (T and

NT) and the parental control were very similar. Mean values
for ash in MON 88701 (T and NT) and the control were 4.31,
4.30, and 4.09% dwt, respectively (Table 2); a difference at the
5% significance level was observed. Differences between MON
88701 (both T and NT) and the control were observed for
calcium, magnesium, manganese, potassium, and zinc and
between MON 88701 (NT) and the control for copper. All
differences were also characterized by small magnitudes (all
<10% relative with respect to the control). Values were also
characterized by extensive overlap, an observation most likely
attributed to the established impact of location on mineral
composition as highlighted by PVCA. Ash and mineral levels in

Figure 1. Heatmap and dendrogram of varimax coefficient scores.
Dendrograms are schematic representations of multivariate distances,
with joined segments indicating similarity.

Figure 2. Variation of the first varimax factor F1 among sites. Filled
circles indicate means, and horizontal lines on a boxplot, from top to
bottom, represent the maximum, third quartile, median, first quartile,
and minimum.
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cottonseed are known to vary extensively,27 and the results
from the univariate and PVCA approaches are consistent with
that.

Factor F3: Gossypol. The factor F3 explained an additional
8% of the variation (Supplementary Table 4 in the Supporting
Information). F3 was strongly correlated with total gossypol (r
= 0.85) and free gossypol (r = 0.84). The major source of
variation in F3 was due to differences between variety within
genotype group, which explained 44% of the variation.
Variation among sites (28%) and among genotype groups
(17%) was also larger than the residual error variation (8%).
Figure 4 shows that the variation among the nine conventional
varieties was large as compared to the variation among the GM
and control varieties.
Differences between MON 88701 (T and NT) and the

control at the 5% significance level were observed for total
gossypol. Mean values for total gossypol in MON 88701 (T
and NT) and the control were 1.04, 1.03, and 0.97% dwt,
respectively. Mature cottonseed demonstrates considerable
variation in levels of gossypol. Environmental factors such as
year effect, rainfall, and stress have been shown to impact
gossypol levels.30−32 Given the known variability of gossypol
due to other factors, it can be concluded that MON 88701 does
not contribute to variation in gossypol levels (Table 3).

Factors F4 and F5: FAs and Moisture. The factor F4

explained an additional 7% of the variation (Supplementary
Table 5 in the Supporting Information). F4 was strongly
positively correlated with myristic acid (r = 0.83) and palmitic
acid (r = 0.71) and strongly negatively correlated with linoleic
acid (r = −0.93). The largest source of variation was due to
varieties within genotype groups (63%), followed by sites
(29%) and residual error (4%). The factor F5 was also
influenced by FA composition and explained 7% of the
variation (Supplementary Table 6 in the Supporting
Information). F5 was strongly positively correlated with
linolenic acid (r = 0.77) and moisture (r = 0.83). Variation
among sites (76%) was the primary source of variation,

Figure 3. Variation of the first varimax factor F1 among varieties.

Table 1. Summary of Protein and Amino Values for MON 88701

meanb (rangec)

componenta MON 88701 (T) MON 88701 (NT) Coker 130 reference rangec main factord effecte

protein 27.91 (22.71−31.47) 27.71 (22.49−31.29) 27.79 (23.53−31.27) 20.58−29.28 F1 site
alanine 1.06 (0.91−1.14) 1.05 (0.88−1.15) 1.05 (0.88−1.17) 0.83−1.22 F1 site
arginine 3.03f (2.33−3.60) 3.03f (2.31−3.62) 3.15 (2.41−3.77) 2.30−3.55 F1 site
aspartic acid 2.39 (1.94−2.64) 2.39 (1.95−2.69) 2.40 (1.92−2.74) 1.79−2.72 F1 site
cystine 0.41 (0.32−0.47) 0.40 (0.31−0.46) 0.40 (0.31−0.46) 0.29−0.47 F1 site
glutamic acid 4.76 (3.80−5.38) 4.71 (3.79−5.57) 4.84 (3.66−5.70) 3.39−5.45 F1 site
glycine 1.10 (0.93−1.19) 1.09 (0.92−1.19) 1.09 (0.91−1.20) 0.85−1.23 F1 site
histidine 0.74 (0.58−0.85) 0.74 (0.58−0.84) 0.75 (0.61−0.84) 0.57−0.84 F1 site
isoleucine 0.91 (0.75−1.01) 0.91 (0.76−1.01) 0.92 (0.77−1.03) 0.72−1.03 F1 site
leucine 1.53 (1.29−1.70) 1.53 (1.28−1.68) 1.54 (1.28−1.69) 1.20−1.72 F1 site
lysine 1.24 (1.05−1.38) 1.24 (1.03−1.37) 1.23 (1.06−1.39) 0.99−1.44 F1 site
methionine 0.40f (0.35−0.46) 0.39 (0.33−0.44) 0.38 (0.32−0.46) 0.29−0.49 F1 site
phenylalanine 1.43 (1.14−1.66) 1.43 (1.13−1.63) 1.45 (1.15−1.66) 1.10−1.63 F1 site
proline 1.00f (0.82−1.21) 1.02 (0.78−1.16) 1.03 (0.81−1.25) 0.79−1.17 F1 site
serine 1.43 (1.14−1.66) 1.08 (0.93−1.28) 1.09 (0.86−1.24) 0.81−1.24 F1 site
threonine 0.87 (0.74−0.94) 0.87 (0.73−0.95) 0.86 (0.73−0.95) 0.67−0.96 F1 site
tryptophan 0.41 (0.33−0.52) 0.41 (0.34−0.50) 0.42 (0.37−0.52) 0.31−0.46 F1 site
tyrosine 0.81 (0.67−0.92) 0.81 (0.68−0.88) 0.81 (0.67−0.91) 0.63−0.91 F1 site
valine 1.21 (1.00−1.40) 1.21 (0.98−1.38) 1.23 (1.00−1.40) 0.97−1.36 F1 site

aExpressed as % dwt. bLeast-square mean. cMinimum to maximum of individual replicate values across all sites. dFactor to which an analyte shows
the highest coefficient. eGreatest source of variance for a given factor. This table shows that the greatest source of variance for these analytes was site,
even when a significant mean difference (α = 0.05) was observed between MON 88701 (T and NT) and the parental control, Coker 130. fMean
different from control at α = 0.05.
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followed by variation within genotype groups (14%) and
residual error (7%).
The FA composition of MON 88701 (T and NT) and the

control was very similar (Table 4). Differences between
MON 88701 and the control were observed at the 5%
significance level for myristic acid (T and NT) and linoleic acid
(T). These statistically significant differences reflected small
differences in mean values for these FAs in MON 88701 (T and
NT) and the control; 0.02% total FA for myristic acid and
0.39% total FA for linoleic acid.
The major FAs in terms of abundance in cottonseed are

palmitic acid, stearic acid, oleic acid, linoleic acid, palmitoleic
acid, and myristic acid. In efforts to change chemical properties

of cottonseed oil, these FAs are targets of conventional
breeding efforts to modify their relative levels.33 In an ANOVA
among cottonseed cultivars, it was observed that most of
phenotypic variance of FA was due to genotype and
environmental effects.33,34 Environmental differences such as
crop year influence FA profiles,35 while variety differences such
as glanded and glandless also have been shown to impact FA
profiles in cottonseed.36 This extensive literature on FA
composition, as well as the results from PVCA, confirms that
transgenic breeding in cotton is not a major source of variability
in these components.

Factor F6: Stearic Acid and Vitamin E. The factor F6

explained 6% of the variation. F6 was strongly positively
correlated with stearic acid (r = 0.72) and vitamin E (r = 0.71).
The largest contributor to variation in F6 was sites (67%),
followed by varieties within genotype groups (14%) and
residual error (7%) (Supplementary Table 7 in the Supporting
Information).
No difference between MON 88701 (T and NT) and the

control was observed for stearic acid, consistent with the
observation noted above that the overall FA composition
between the comparators was very similar. It is intriguing,
however, that stearic acid segregates in the factor analysis from
the other FAs as well as showing a correlation with vitamin E.
These findings suggest that PVCA could be a useful exploratory
tool in evaluating relationships between different seed
components that may be of value to breeding programs.
A difference between MON 88701 (T and NT) and the

control was observed at the 5% significance level for vitamin E.
This difference reflected mean values of 140.14, 139.01, and
131.33 mg/kg dwt; MON 88701 (T and NT) and the control,
respectively. This small magnitude of difference can be
evaluated in the context of variability in individual replicate
values for the control: 91.78 to 162.98 mg/kg dwt. The large
variation in values can be attributed to the influence of sites and
is consistent with literature observations.
Vitamin E levels are known to be affected by environment

and genotype. For example, Smith and Creelman37 showed a
significant difference in vitamin E levels across 18 varieties
grown at a single location in the United States over a period of
2 years. Smith and Creelman37 also point out that the
environmental factors associated with variability in vitamin E
levels include year and temperature. The results obtained

Table 2. Summary of Ash and Mineral Values for MON 88701

meanb (rangec)

componenta MON 88701 (T) MON 88701 (NT) Coker 130 reference rangec main factord effecte

ash 4.31f (3.77−4.74) 4.30 (3.76−4.88) 4.09 (3.34−5.00) 3.18−4.68 F2 site
calcium 0.15f (0.10−0.22) 0.15f (0.10−0.21) 0.13 (0.08−0.19) 0.08−0.18 F6 site
copper 8.90 (5.22−11.91) 8.94f (5.02−12.15) 8.92 (5.40−11.92) 4.46−11.62 F1 site
iron 67.21 (41.96−83.17) 72.43 (41.73−109.70) 71.16 (45.03−95.10) 39.49−114.34 F5 site
magnesium 0.40f (0.35−0.44) 0.40f (0.35−0.45) 0.38 (0.33−0.44) 0.31−0.46 F2 site
manganese 12.81f (10.18−14.81) 13.63f (10.59−17.47) 11.73 (8.61−14.11) 9.07−17.14 F2 site
phosphorus 0.72 (0.56−0.84) 0.71 (0.58−0.87) 0.72 (0.54−0.87) 0.48−0.87 F2 site
potassium 1.12f (0.98−1.24) 1.13f (0.99−1.32) 1.07 (0.79−1.27) 0.90−1.26 F1 site
sodium 0.03 (0.02−0.12) 0.026 (0.0053−0.082) 0.03 (0.01−0.10) 0.01−0.08 F5 site
zinc 37.58f (27.31−46.74) 37.81f (27.60−46.04) 40.14 (28.22−52.95) 25.07−48.49 F1 site

aExpressed as % dwt except for copper, iron, manganese, and zinc, which are expressed as mg/kg dwt. bLeast-square mean. cMinimum to maximum
of individual replicate values across all sites. dFactor to which an analyte shows the highest coefficient. eGreatest source of variance for a given factor.
This table shows that the greatest source of variance for these analytes was site location, even when a significant mean difference (α = 0.05) was
observed between MON 88701 (T and NT) and the parental control, Coker 130. ffMean different from control at α = 0.05.

Figure 4. Variation of factor F3 among varieties.
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through PVCA support the conclusion of a lack of meaningful
impact of transgenic breeding.
Factor F7: Cyclopropenoid Fatty Acids. The factor F7

was strongly correlated with the three cyclopropenoid fatty
acids (CFPA): dihydrosterculic (r = 0.76), sterculic (r = 0.94),
and malvalic (r = 0.92). The largest contributor to variation in
F7 was residual error (87%) (Supplementary Table 8 in the
Supporting Information). Differences between MON 88701 (T
and NT) and the control at the 5% significance level were
observed for dihydrosterculic acid.
CPFAs in cotton include malvalic acid, sterculic acid, and

dihydrosterculic acid. Geographic location and variety have

been shown to contribute to natural variability in CPFA levels
in conventional cotton.36,38

Concluding Remarks. As previously described, variation
among sites was the primary contributor to variation in four of
the seven factors, while variation among the varieties within a
genotype was the largest component of variance for two other
factors. In cases where the variation among the variety groups
was larger than residual error variation, boxplots of the values
showed that the two GM varieties were, in fact, similar to their
near-isogenic control variety, while other conventional varieties
varied widely. Variation among replicates and variation due to
interaction between varieties and sites was negligible for all

Table 3. Summary of Antinutrient Values for MON 88701

meanb (rangec)

componenta MON 88701 (T) MON 88701 (NT) Coker 130 reference rangec main factord effecte

free gossypol 0.94f (0.80−1.18) 0.93 (0.76−1.10) 0.89 (0.68−1.20) 0.50−1.41 F3 variety (genotype)
total gossypol 1.04f (0.84−1.24) 1.03f (0.84−1.52) 0.97 (0.74−1.10) 0.56−1.61 F3 variety (genotype)
malvalic acid 0.39 (0.20−0.55) 0.39 (0.24−0.50) 0.37 (0.26−0.49) 0.11−0.59 F7 residual
sterculic acid 0.22 (0.13−0.29) 0.22 (0.12−0.27) 0.21 (0.17−0.27) 0.06−0.34 F7 residual
dihydrosterculic acid 0.15f (0.11−0.19) 0.15f (0.12−0.19) 0.14 (0.11−0.17) 0.04−0.23 F7 residual

aGossypols expressed as % dwt, acids expressed as total FAs. bLeast-square mean. cMinimum to maximum of individual replicate values across all
sites. dFactor to which an analyte shows the highest coefficient. eGreatest source of variance for a given factor. This table shows that the greatest
source of variance for these analytes was substance within a genotype (GM or non-GM group) and/or residual error, even when a significant mean
difference (α = 0.05) was observed between MON 88701 (T and NT) and the parental control, Coker 130. fMean difference from control at α =
0.05.

Table 4. Summary of Fat, FA, and Vitamin E Values for MON 88701

meanb (rangec)

componenta MON 88701 (T) MON 88701 (NT) Coker 130 reference rangec main factord effecte

total fat 23.14f (19.79−26.78) 23.51f (20.99−25.54) 22.31 (20.71−25.20) 16.58−25.25 Fc variety (genotype)
myristic 0.77f (0.66−0.95) 0.77f (0.66−0.95) 0.79 (0.71−0.98) 0.45−1.04 F4 variety (genotype)
palmitic 23.95 (22.34−25.28) 23.93 (22.30−25.45) 23.80 (22.69−25.05) 19.11−26.73 F4 variety (genotype)
palmitoleic 0.50 (0.44−0.54) 0.50 (0.45−0.55) 0.50 (0.45−0.54) 0.44−0.67 F4 variety (genotype)
stearic 2.54 (2.29−2.85) 2.52 (2.16−2.93) 2.47 (2.15−2.76) 1.98−2.97 F6 site
oleic 15.10 (14.15−16.45) 15.05 (14.05−16.29) 14.96 (14.06−16.44) 13.71−18.39 F2 site
linoleic 55.77f (54.24−58.22) 55.84 (54.22−58.48) 56.15 (54.04−57.93) 49.78−59.61 F4 variety (genotype)
linolenic 0.18 (0.14−0.34) 0.18 (0.11−0.38) 0.17 (0.12−0.21) 0.72−1.03 F5 site
arachidic 0.29 (0.23−0.32) 0.29 (0.23−0.32) 0.28 (0.23−0.32) 1.79−2.72 F4 variety (genotype)
behenic 0.15 (0.12−0.19) 0.15 (0.12−0.17) 0.15 (0.13−0.21) 0.29−0.47
vitamin E 140.14f (86.23−179.34) 139.01f (87.22−184.47) 131.33 (91.78−162.98) 84.07−162.76 F6 site

aExpressed as % dwt for total fat, % total FA for all FAs, and mg/kg dwt for vitamin E. bLeast-square mean. cMinimum to maximum of individual
replicate values across all sites. dFactor to which an analyte shows the highest coefficient. eGreatest source of variance for a given factor. This table
shows that the greatest source of variance for these analytes was site location and/or variety within a genotype (GM or non-GM group), even when a
significant mean difference (α = 0.05) was observed between MON 88701 (T and NT) and the parental control, Coker 130. fMean different from
control at α = 0.05.

Table 5. Summary of Fiber and Proximate Values for MON 88701

meanb (rangec)

componenta MON 88701 (T) MON 88701 (NT) Coker 130 reference rangec main factord effecte

ADF 25.27f (23.26−27.74) 25.53f (23.30−30.43) 26.58 (22.08−29.58) 23.42−31.62
NDF 30.73f (25.13−34.42) 31.43f (28.05−37.27) 32.59 (28.87−35.89) 29.27−40.63 F1 site
TDF 39.44 (36.91−42.13) 39.75f (36.22−43.22) 41.13 (39.05−44.37)) 37.29−48.60 F1 site
CF 18.17 (15.97−21.66) 17.78f (14.54−20.73) 18.54 (16.06−21.70) 16.92−23.32 F1 site
calories 498.5f (482.46−517.46) 500.37f (487.62−511.92) 495.24 (487.70−512.65) 466.09−509.91 F5 site
carbohydrates by calculation 44.64f (41.40−48.89) 44.47f (41.07−48.81) 45.83 (42.14−50.30) 43.28−54.90 F1 site

aExpressed as % dwt except calories, which are expressed as kcal/100g dwt. bLeast-square mean. cMinimum to maximum of individual replicate
values across all sites. dFactor to which an analyte shows the highest coefficient. eGreatest source of variance for a given factor. This table shows that
the greatest source of variance for these analytes was site location, even when a significant mean difference (α = 0.05) was observed between
MON 88701 (T and NT) and the parental control, Coker 130. fMean different from control at α = 0.05.
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seven factors. Figure 5 shows the cumulative contributions of
each variance component over all factors, while Figure 6 shows
the same information when grouped by factor.

Our implementation of PVCA offers the following
advantages for interpreting composition data.
1. The use of multivariate analyses allows more unified

interpretations of the effects of genetic modification, environ-
ment, and natural genotypic variation on biochemical systems
than we can obtain from the customary univariate ANOVA for
individual analytes. For example, PVCA showed that several
minerals were correlated with each other and could be
considered as measurements of one phenomenon that was
most strongly associated with environmental variation.

2. The use of variance components allows the judgments of
differences between GM and conventional plants to be made
within the context of natural genotypic and environmental
variation.
3. PVCA offers an effective bridge between the traditional

ANOVA approach that is used with designed field trials in
agronomy and the multivariate approach that is favored in
chemistry and genetics.
4. The principal components and varimax factor rotations

could highlight relationships among the analytes to prompt
further scientific investigation.
5. Extraneous or nuisance variables that were not a part of

the design of the experiment but are anticipated to affect the
levels of the analytes can be modeled with fixed effects to
remove their influence on the estimation of the variance
components.
6. Even though the intermediate calculations involve some

complicated mathematical concepts, the final results are
phrased in term of percentages and are easy to convey to a
broad audience. Misinterpretations of statistical significance are
less likely to occur with this simplified presentation of findings.
7. PVCA can be applied with no additional modification for

situations in which the intended effect of transgene insertion is
a change in composition, such as an oil quality trait.
8. PVCA is relatively easy to perform using standard software

packages such as JMP, SAS, and R.
If an appropriate standardized framework can be established,

the application of PVCA to composition assessments for
regulatory purposes could be considered especially in studies

Table 6. Summary of Factor 1 Sources of Variance

source of variance
fraction of variance due to

source (%)
PVCa

contribution (%)

site 50.43 19.26
genotype_group 25.84 9.87
residual 15.88 6.06
variety(genotype_group) 4.40 1.68
rep(site) 1.82 0.69
site*genotype_group 1.63 0.62
site*variety(genotype) 0.00 0.00

100 38.19
aPVC = principal variance component.

Figure 5. Proportions of variance explained by variance components
for each factor. Numbers in the plot represent the cumulative
proportions of variation in the data that are attributed to each variance
component, totaled over factors.

Figure 6. Proportions of variance explained by each factor, with
relative contributions from each variance component. Numbers in the
plot represent the cumulative proportions of variance in the data that
are attributed to each factor.
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where the comparative assessment applies to GM and non-GM
comparators grown at multiple locations. In cases where
modification of seed composition is the intended effect to
achieve a quality trait, PVCA could also be used to confirm that,
for example, soy oil profiles are major sources of variation that
can be linked directly to the GM.
We propose that PVCA also provides a useful method for

analyzing data from metabolomic profiling studies. Such studies
offer some additional challenges, such as the inclusion of many
more analytes than samples, missing values, censored values
when analytes fall below the limit of detection, and the
inclusion of large numbers of analytes that represent unknown
compounds. Despite these challenges, PVCA can be applied to
such data with some additional steps. These approaches are
under development.
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